Anthony Masure (responsable de la recherche, HEAD – Genève)
Alexia Mathieu (responsable du Master Media Design, HEAD – Genève)
Paris, Le BAL, 23 janvier 2020
Séance inaugurale du cycle « Machine Vision : surveillance, simulation, spéculation »
Univ. Gustave Eiffel - Paris Est, univ. Sorbonne Nouvelle - Paris 3, CNRS, ENS Ulm - PSL
Organisateurs : Ada Ackerman, Alice Leroy, Antonio Somaini
Bien que le concept d’« intelligence artificielle » (IA) soit déjà ancien, sa présence ne cesse de s’intensifier, que ce soit dans la presse, la pop culture, ou les objets du quotidien. Des approches critiques se développent, par exemple face aux dérives sécuritaires de ces technologies, ou face à la précarisation des « tâcherons du clic » invisibilisés par ces promesses d'innovation. Comment ces enjeux sociaux sont-ils abordés par les métiers dits de la « création », eux-mêmes en proie à des risques et opportunité d’automatisation ? Qu’est-ce que le design peut faire « avec » les intelligences artificielles ? Comment aborder ces questionnements dans des situations pédagogiques ?
HEAD – Genève, 2006–
HEAD – Genève, nouveau campus, 2017
Master Media Design, HEAD – Genève
Institut de Recherche en Art & Design (Irad), HEAD – Genève
« On peut espérer que les machines finiront par concurrencer les hommes dans tous les champs intellectuels. […] Beaucoup de gens pensent qu’une activité très abstraite, comme le jeu d’échecs, serait la meilleure. Il se peut qu’il soit préférable [de] suivre l’enseignement normal d’un enfant. […] Je ne sais pas quelle est la bonne réponse, mais je pense que les deux approches devraient être essayées. »
— Alan Turing, « Computing machinery and intelligence », 1950
Machine hypothético-déductive (1) et machine inductive (2)
Dominique Cardon, Jean-Philippe Cointet et Antoine Mazières,
« La revanche des neurones », Réseaux, no 211, novembre 2018
« Évolution de l’influence académique des approches connexionniste et symbolique »
Source : « La revanche des neurones », 2018
Garry Kasparov VS IBM Deep Blue, 1997
Lee Sedol VS Google DeepMind AlphaGo, 2017 (deep learning)
« L’architecture des machines à prédire va être transformée pour affronter les big data […] : de nouveaux problèmes d’ingénierie à base de grands volumes de données comme la détection de spams, les techniques de filtrage collaboratif utilisées pour la recommandation, la prédiction de stock, la recherche d’information ou l’analyse des réseaux sociaux. »
— Dominique Cardon, Jean-Philippe Cointet et Antoine Mazières,
« La revanche des neurones », Réseaux, no 211, novembre 2018
Le deep learning, ou « apprentissage profond », est un type d’intelligence artificielle dérivé du machine learning (apprentissage automatique) où l’idéal est d’élaborer une machine est capable d’« apprendre par elle-même », contrairement à la programmation « traditionnelle » où elle se contente d’exécuter des règles prédéterminées.
Fonctionnement du deep learning
Gema Parreño, « TensorFlow Introduction », avril 2016
Exploration de données, robotique industrielle, logistique, reconnaissance vocale, applications bancaires, diagnostics médicaux, reconnaissance de formes, moteurs de recherche, etc.
« Aura-t-on vraiment le choix ? Le rapport Jobs Lost, Jobs Gained (2017) du McKinsey Global Institute estime que ‹ 50 % des emplois ont le potentiel d’être automatisés avec les technologies actuelles. › ‹ Nos scénarios dans 46 pays suggèrent qu’entre zéro et un tiers des activités pourraient être remplacées en 2030. D’ici là, 75 à 375 millions de travailleurs devront changer de domaine ›, précisent les experts. »
— Maïlys Khider, « Ces 25-35 ans qui ne veulent plus faire carrière », Le Figaro Madame, avril 2019
Google, voiture autonome, 2010–
« Robot journaliste : en un an, une IA créée par le Washington Post
a publié 850 articles », Numerama.com, septembre 2017
DoNotPay (robot avocat), 2017
« Assistants vocaux » embarqués dans des enceintes connectées
(Amazon Alexa, Google Home, etc.)
« Nous voulons […] accepter la possibilité […] qu’une équipe d’ingénieurs puisse construire une machine qui fonctionne, mais dont les modalités de fonctionnement ne peuvent être décrites de manière satisfaisante par ses concepteurs, parce qu’ils ont appliqué une méthode en grande partie expérimentale. »
— Alan Turing, « Computing machinery and intelligence », 1950
Carte de ravitaillement de Berlin Est par les alliés, 1948
Modèle de communication, Shannon et Weaver, ~ 1948
Une « théorie entière de la commande et de la communication, aussi bien chez l’animal que dans la machine ».
— Norbert Wiener, La cybernétique. Information et régulation dans le vivant et la machine, 1952
Pour expliquer le concept de « boîte noire », Norbert Wiener utilise l’exemple d’une machine se substituant à un organisme. Il est donc possible de remplacer un système par un autre sans connaître le détail de son fonctionnement interne.
« La compétence de l’appareil doit être supérieure à celle de ses fonctionnaires. Aucun appareil photo correctement programmé ne peut être entièrement percé à jour par un photographe […]. C’est une black box. […] Voilà ce qui caractérise le fonctionnement de tout appareil : le fonctionnaire est maître de l’appareil grâce au contrôle qu’il exerce sur ses faces extérieures (sur l’input et sur l’output), et l’appareil est maître du fonctionnaire du fait de l’opacité de son intérieur. »
— Vilém Flusser, Pour une philosophie de la photographie [1983], 1998, p. 36
« La boîte, qu’elle soit appareil photo ou média, tend automatiquement à nous dévorer. Les photographes essaient de duper les boites pour leur faire produire de l’information. C'est la lutte entre la liberté humaine et ses propres dispositifs. Chaque photographie témoigne isolément de cette lutte. »
— Vilém Flusser, « Comment ne pas être dévoré par la boîte »,
14e Rencontres Internationales de la Photographie, Arles, 9 juillet 1983
« Les robots peuvent honorer notre père et notre mère à notre place. Ils peuvent le faire mieux que nous, avec plus de précision, d’efficacité et de pertinence. Tout comportement est théoriquement mécanisable : pensées, sentiments, et mêmes les inspirations les plus transcendantes. Si difficulté il y a, elle n’est que pratique. »
— Vilém Flusser, « Programme (Tes père et mère honoreras) » [1986], dans : dossier « Vivre dans les programmes », dir. Yves Citton et Anthony Masure, Multitudes, no 74, avril 2019
Vilém Flusser, Post-histoire [1982], postface de Yves Citton,
préface de Anthony Masure, Paris, T&P Work UNiT, 2019
Johann Chapoutot, Libres d’obéir. Le management, du nazisme à aujourd'hui, Paris, Gallimard, 2020
« Is Artificial Intelligence Permanently Inscrutable? », Nautilus, 2016
Ce Master se focalise sur l’apprentissage du design d’interaction pour l’innovation scientifique et sociale
Trailer Master Media Design, HEAD – Genève, 2020
Margaux Charvolin, Sue, 2017
Relever les défis technologiques et sociaux engendrés par les intelligences artificielles et les nouvelles interfaces
Romain Talou, Playguido, 2019
Salone Ludico, Ximoan, 2017
Vincent Belet, The Reading Lantern, 2019
Vincent Belet, The Reading Lantern, 2019
Vincent Belet, The Reading Lantern, 2019
Ghofran Akil, Unresolved, 2019
Mathilde Buenerd, Jouska, 2018
Mathilde Buenerd, Jouska, 2018
Marta Revuelta, AI Facial Profiling, Levels of Paranoia, 2018
Marta Revuelta, AI Facial Profiling, Levels of Paranoia, 2018
David Héritier, Marty109, 2019
David Héritier, Marty109, 2019
Le projet Thinking Machines revisite la notion d’outils personnalisés à l’époque des intelligences dites « artificielles » et explore comment la création d'assistants personnalisés peut remodeler le processus de travail des designers.
Vannevar Bush, « As we may think », The Atlantic Monthly, Washington D.C., juillet 1945
Vannevar Bush, « Comme nous pourrions penser » [1945], trad. de l’anglais par Anthony Masure, 2014
Douglas Engelbart, The mother of all demos, 1968
Stuart Russel, Human Compatible, 2019
Le projet Thinking Machines revisite les fantasmes et réalités des machines dites « pensantes », à l’heure des « réseaux de neurones » qui transforment actuellement les perspectives de notre société.
Il prend la forme d’un studio de design fictionnel dans lequel le workflow classique a été radicalement transformé par les réseaux de neurones et les machines automatisées.
Master Media Design, The Loom, 2020
Master Media Design, The Loom, 2020
Du métier à tisser Jacquard aux neural networks, en passant par les générateurs de texte
Master Media Design, The Loom, punching cards, 2020
Master Media Design, The Loom, punching cards, 2020
Master Media Design, The Loom, punching cards, 2020
Master Media Design, The Loom, layout, 2020
Master Media Design, The Loom, layout, 2020
Master Media Design, The Loom, layout, 2020
Master Media Design, The Loom, illustration, 2020
Master Media Design, The Loom, illustration, 2020
Master Media Design, The Loom, illustration, 2020
Master Media Design, The Loom, booklet, 2020
Master Media Design, The Loom, booklet, 2020
Idée reçue 1 : l’IA est d’ores et déjà efficace et fiable
Idée reçue 2 : l’IA est intelligente
Idée reçue 3 : autonome, l’IA apprend toute seule
Idée reçue 4 : l’IA aura ses réseaux de neurones ou ne sera pas
Idée reçue 5 : l’IA créera autant d’emplois qu’elle en supprimera
Idée reçue 6 : point besoin d’éthique pour bâtir notre monde d’IA
Idée reçue 7 : l’IA sera bientôt plus intelligente que l’humain
– Yann Moulier Boutang, Ariel Kyrou, « Mama IA Mamamouchi. Le dynamitage de 7 idées reçues pour en finir avec le Bourgeois numérique, ce Monsieur Jourdain de l’intelligence artificielle », Multitudes, no 72, octobre 2018, p. 7-15
Google, Tensor Flow, 2015–
IBM, Watson, 2011–
Adobe Sensei, 2016–
« Autodesk lance (enfin) son logiciel de design génératif », 2017
TheGrid.io, 2016
Microsoft, The Next Rembrandt, 2018
Robbie Barrat, tweet du 7 décembre 2017
Zalando, Fashion-MNIST dataset (60 000 sprites)
Ted Nelson, Computer Lib / Dream Machines, 1974
Robbie Barrat, Balenciaga AI, 2018
Nicolas Maigret, Predictive Art Bot, 2017
« Made in Machina/e », 2018
Studio Moniker, « Conditional Design », 2008
Studio Moniker, « Repeat After Me. Hommage to the Human Voice », 2019
« À travers la promesse fallacieuse de l’émancipation par l’automation et le spectre menaçant de l’obsolescence du travail humain, les plateformes numériques condamnent la multitude grandissante des tâcherons du clic à une aliénation radicale : œuvrer inlassablement à leur propre disparition en s’effaçant derrière des machines dont ils sont et resteront les rouages indispensables. »
— Antonio Casilli, En attendant les robots, Paris, Seuil, 2019
Danielle Child, Working Aesthetics. Labour, Art and Capitalism, New York, Bloomsburry, 2019
Laurent Huret, « Praying for my Haters », Paris, Centre Culturel Suisse, 2019
Elisa Giardina Papa, Labor of Sleep, Whitney Museum Sunrise/Sunset Commission, 2017
@CatHallam1, tweet du 6 avril 2019
« When Transgender Travelers Walk Into Scanners,
Invasive Searches Sometimes Wait on the Other Side », ProPublica, août 2019
Marta Revuelta, AI Facial Profiling, Levels of Paranoia,
HEAD — Genève, Master Media Design, photo Baptiste Coulon
Studio Moniker, « Do Not Draw a Penis. Automated doodle moderation », 2019
Jennifer Lyn Morone, « Reclaiming the Corporate Owned Self », 2017
Daniel Smilkov, Shan Carter, Deep playground, 2016
Kate Crawford, Vladan Joler, « Anatomy of an AI System » [Amazon Echo], 2018
Metahaven, Black Transparency. The Right to Know in the Age of Mass Surveillance, 2015
Alistair McClymont, John Fass, « Of Machines Learning to See Lemon », 2018
« Ce processus de classification invisible vise habituellement à produire des décisions automatisées, qui peuvent avoir de lourdes conséquences sur les libertés individuelles et collectives. Les possibles avantages de l’apprentissage machine [machine learning] sont nombreux, mais nous courons le risque de développer des technologies d’une telle complexité que notre capacité à les façonner pour servir le bien commun devient très limitée. »
— Alistair McClymont, John Fass, « Of Machines Learning to See Lemon », 2018
Raphaël Bastide, Twins, performance, 2016
James Bridle (dir.), exposition « Through Other Eyes », Chypre, Limassol, NeMe Art Centre, 2019
Vilém Flusser & Louis Bec, Vampyroteuthis infernalis [1981–1987],
trad. de l’allemand par Christophe Lucchese, Bruxelles, Zones Sensibles, 2015
Reveal.js, un framework HTML / CSS pour concevoir des slides
Gimlet Variable, police de caractère variable, David Jonathan Ross, janvier 2020
Gimlet Variable, police de caractère variable, David Jonathan Ross, janvier 2020
Gimlet X-Ray, police de caractère variable, David Jonathan Ross, janvier 2020
Gimlet X-Ray, police de caractère variable, David Jonathan Ross, janvier 2020
—
Présentation réalisée avec Reveal.js, MIT License
—
Polices de caractère : Gimlet Variable & Gimlet X-Ray
David Jonathan Ross, Font of the Month Club, janvier 2020
—
Licence des textes : CC BY–SA